Source code for pytransform3d.rotations._jacobians
import math
import numpy as np
from ._conversions import cross_product_matrix
[docs]
def left_jacobian_SO3(omega):
r"""Left Jacobian of SO(3) at theta (angle of rotation).
.. math::
\boldsymbol{J}(\theta)
=
\frac{\sin{\theta}}{\theta} \boldsymbol{I}
+ \left(\frac{1 - \cos{\theta}}{\theta}\right)
\left[\hat{\boldsymbol{\omega}}\right]
+ \left(1 - \frac{\sin{\theta}}{\theta} \right)
\hat{\boldsymbol{\omega}} \hat{\boldsymbol{\omega}}^T
Parameters
----------
omega : array-like, shape (3,)
Compact axis-angle representation.
Returns
-------
J : array, shape (3, 3)
Left Jacobian of SO(3).
See also
--------
left_jacobian_SO3_series :
Left Jacobian of SO(3) at theta from Taylor series.
left_jacobian_SO3_inv :
Inverse left Jacobian of SO(3) at theta (angle of rotation).
"""
omega = np.asarray(omega)
theta = np.linalg.norm(omega)
if theta < np.finfo(float).eps:
return left_jacobian_SO3_series(omega, 10)
omega_unit = omega / theta
omega_matrix = cross_product_matrix(omega_unit)
return (
np.eye(3)
+ (1.0 - math.cos(theta)) / theta * omega_matrix
+ (1.0 - math.sin(theta) / theta) * np.dot(omega_matrix, omega_matrix)
)
[docs]
def left_jacobian_SO3_series(omega, n_terms):
"""Left Jacobian of SO(3) at theta from Taylor series.
Parameters
----------
omega : array-like, shape (3,)
Compact axis-angle representation.
n_terms : int
Number of terms to include in the series.
Returns
-------
J : array, shape (3, 3)
Left Jacobian of SO(3).
See Also
--------
left_jacobian_SO3 : Left Jacobian of SO(3) at theta (angle of rotation).
"""
omega = np.asarray(omega)
J = np.eye(3)
pxn = np.eye(3)
px = cross_product_matrix(omega)
for n in range(n_terms):
pxn = np.dot(pxn, px) / (n + 2)
J += pxn
return J
[docs]
def left_jacobian_SO3_inv(omega):
r"""Inverse left Jacobian of SO(3) at theta (angle of rotation).
.. math::
\boldsymbol{J}^{-1}(\theta)
=
\frac{\theta}{2 \tan{\frac{\theta}{2}}} \boldsymbol{I}
- \frac{\theta}{2} \left[\hat{\boldsymbol{\omega}}\right]
+ \left(1 - \frac{\theta}{2 \tan{\frac{\theta}{2}}}\right)
\hat{\boldsymbol{\omega}} \hat{\boldsymbol{\omega}}^T
Parameters
----------
omega : array-like, shape (3,)
Compact axis-angle representation.
Returns
-------
J_inv : array, shape (3, 3)
Inverse left Jacobian of SO(3).
See Also
--------
left_jacobian_SO3 : Left Jacobian of SO(3) at theta (angle of rotation).
left_jacobian_SO3_inv_series :
Inverse left Jacobian of SO(3) at theta from Taylor series.
"""
omega = np.asarray(omega)
theta = np.linalg.norm(omega)
if theta < np.finfo(float).eps:
return left_jacobian_SO3_inv_series(omega, 10)
omega_unit = omega / theta
omega_matrix = cross_product_matrix(omega_unit)
return (
np.eye(3)
- 0.5 * omega_matrix * theta
+ (1.0 - 0.5 * theta / np.tan(theta / 2.0)) * np.dot(
omega_matrix, omega_matrix)
)
[docs]
def left_jacobian_SO3_inv_series(omega, n_terms):
"""Inverse left Jacobian of SO(3) at theta from Taylor series.
Parameters
----------
omega : array-like, shape (3,)
Compact axis-angle representation.
n_terms : int
Number of terms to include in the series.
Returns
-------
J_inv : array, shape (3, 3)
Inverse left Jacobian of SO(3).
See Also
--------
left_jacobian_SO3_inv :
Inverse left Jacobian of SO(3) at theta (angle of rotation).
"""
from scipy.special import bernoulli
omega = np.asarray(omega)
J_inv = np.eye(3)
pxn = np.eye(3)
px = cross_product_matrix(omega)
b = bernoulli(n_terms + 1)
for n in range(n_terms):
pxn = np.dot(pxn, px / (n + 1))
J_inv += b[n + 1] * pxn
return J_inv