pytransform3d.rotations.left_jacobian_SO3_inv#

pytransform3d.rotations.left_jacobian_SO3_inv(omega)[source]#

Inverse left Jacobian of SO(3) at theta (angle of rotation).

\[\boldsymbol{J}^{-1}(\theta) = \frac{\theta}{2 \tan{\frac{\theta}{2}}} \boldsymbol{I} - \frac{\theta}{2} \left[\hat{\boldsymbol{\omega}}\right] + \left(1 - \frac{\theta}{2 \tan{\frac{\theta}{2}}}\right) \hat{\boldsymbol{\omega}} \hat{\boldsymbol{\omega}}^T\]
Parameters:
omegaarray-like, shape (3,)

Compact axis-angle representation.

Returns:
J_invarray, shape (3, 3)

Inverse left Jacobian of SO(3).

See also

left_jacobian_SO3

Left Jacobian of SO(3) at theta (angle of rotation).

left_jacobian_SO3_inv_series

Inverse left Jacobian of SO(3) at theta from Taylor series.