Note
Go to the end to download the full example code.
Interpolate Between Quaternion Orientations#
We can interpolate between two orientations that are represented by quaternions either linearly or with slerp (spherical linear interpolation). Here we compare both methods and measure the angular velocity between two successive steps. We can see that linear interpolation results in a non-constant angular velocity. Usually it is a better idea to interpolate with slerp.
import numpy as np
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import axes3d
import matplotlib.animation as animation
from pytransform3d import rotations as pr
velocity = None
last_R = None
def interpolate_linear(start, end, t):
return (1 - t) * start + t * end
def update_lines(step, start, end, n_frames, rot, profile):
global velocity
global last_R
if step == 0:
velocity = []
last_R = pr.matrix_from_quaternion(start)
if step <= n_frames / 2:
t = step / float(n_frames / 2 - 1)
q = pr.quaternion_slerp(start, end, t)
else:
t = (step - n_frames / 2) / float(n_frames / 2 - 1)
q = interpolate_linear(end, start, t)
R = pr.matrix_from_quaternion(q)
# Draw new frame
rot[0].set_data(np.array([0, R[0, 0]]), [0, R[1, 0]])
rot[0].set_3d_properties([0, R[2, 0]])
rot[1].set_data(np.array([0, R[0, 1]]), [0, R[1, 1]])
rot[1].set_3d_properties([0, R[2, 1]])
rot[2].set_data(np.array([0, R[0, 2]]), [0, R[1, 2]])
rot[2].set_3d_properties([0, R[2, 2]])
# Update vector in frame
test = R.dot(np.ones(3) / np.sqrt(3.0))
rot[3].set_data(
np.array([test[0] / 2.0, test[0]]), [test[1] / 2.0, test[1]])
rot[3].set_3d_properties([test[2] / 2.0, test[2]])
velocity.append(np.linalg.norm(R - last_R))
last_R = R
profile.set_data(np.linspace(0, 1, n_frames)[:len(velocity)], velocity)
return rot
if __name__ == "__main__":
# Generate random start and goal
np.random.seed(3)
start = np.array([0, 0, 0, np.pi])
start[:3] = np.random.randn(3)
start = pr.quaternion_from_axis_angle(start)
end = np.array([0, 0, 0, np.pi])
end[:3] = np.random.randn(3)
end = pr.quaternion_from_axis_angle(end)
n_frames = 200
fig = plt.figure(figsize=(12, 5))
ax = fig.add_subplot(121, projection="3d")
ax.set_xlim((-1, 1))
ax.set_ylim((-1, 1))
ax.set_zlim((-1, 1))
ax.set_xlabel("X")
ax.set_ylabel("Y")
ax.set_zlabel("Z")
Rs = pr.matrix_from_quaternion(start)
Re = pr.matrix_from_quaternion(end)
rot = [ax.plot([0, 1], [0, 0], [0, 0], c="r", lw=3)[0],
ax.plot([0, 0], [0, 1], [0, 0], c="g", lw=3)[0],
ax.plot([0, 0], [0, 0], [0, 1], c="b", lw=3)[0],
ax.plot([0, 1], [0, 1], [0, 1], c="gray", lw=3)[0],
ax.plot([0, Rs[0, 0]], [0, Rs[1, 0]], [0, Rs[2, 0]], c="r", lw=3,
alpha=0.5)[0],
ax.plot([0, Rs[0, 1]], [0, Rs[1, 1]], [0, Rs[2, 1]], c="g", lw=3,
alpha=0.5)[0],
ax.plot([0, Rs[0, 2]], [0, Rs[1, 2]], [0, Rs[2, 2]], c="b", lw=3,
alpha=0.5)[0],
ax.plot([0, Re[0, 0]], [0, Re[1, 0]], [0, Re[2, 0]], c="orange",
lw=3, alpha=0.5)[0],
ax.plot([0, Re[0, 1]], [0, Re[1, 1]], [0, Re[2, 1]], c="turquoise",
lw=3, alpha=0.5)[0],
ax.plot([0, Re[0, 2]], [0, Re[1, 2]], [0, Re[2, 2]], c="violet",
lw=3, alpha=0.5)[0]]
ax = fig.add_subplot(122)
ax.set_xlim((0, 1))
ax.set_ylim((0, 1))
profile = ax.plot(0, 0)[0]
anim = animation.FuncAnimation(fig, update_lines, n_frames,
fargs=(start, end, n_frames, rot, profile),
interval=50, blit=False)
plt.show()
Total running time of the script: (0 minutes 36.192 seconds)