Interpolate Between Quaternion Orientations#

We can interpolate between two orientations that are represented by quaternions either linearly or with slerp (spherical linear interpolation). Here we compare both methods and measure the angular velocity between two successive steps. We can see that linear interpolation results in a non-constant angular velocity. Usually it is a better idea to interpolate with slerp.

import matplotlib.animation as animation
import matplotlib.pyplot as plt
import numpy as np
from mpl_toolkits.mplot3d import axes3d  # noqa: F401

from pytransform3d import rotations as pr

velocity = None
last_R = None


def interpolate_linear(start, end, t):
    return (1 - t) * start + t * end


def update_lines(step, start, end, n_frames, rot, profile):
    global velocity
    global last_R

    if step == 0:
        velocity = []
        last_R = pr.matrix_from_quaternion(start)

    if step <= n_frames / 2:
        t = step / float(n_frames / 2 - 1)
        q = pr.quaternion_slerp(start, end, t)
    else:
        t = (step - n_frames / 2) / float(n_frames / 2 - 1)
        q = interpolate_linear(end, start, t)

    R = pr.matrix_from_quaternion(q)

    # Draw new frame
    rot[0].set_data(np.array([0, R[0, 0]]), [0, R[1, 0]])
    rot[0].set_3d_properties([0, R[2, 0]])

    rot[1].set_data(np.array([0, R[0, 1]]), [0, R[1, 1]])
    rot[1].set_3d_properties([0, R[2, 1]])

    rot[2].set_data(np.array([0, R[0, 2]]), [0, R[1, 2]])
    rot[2].set_3d_properties([0, R[2, 2]])

    # Update vector in frame
    test = R.dot(np.ones(3) / np.sqrt(3.0))
    rot[3].set_data(
        np.array([test[0] / 2.0, test[0]]), [test[1] / 2.0, test[1]]
    )
    rot[3].set_3d_properties([test[2] / 2.0, test[2]])

    velocity.append(np.linalg.norm(R - last_R))
    last_R = R
    profile.set_data(np.linspace(0, 1, n_frames)[: len(velocity)], velocity)

    return rot


if __name__ == "__main__":
    # Generate random start and goal
    np.random.seed(3)
    start = np.array([0, 0, 0, np.pi])
    start[:3] = np.random.randn(3)
    start = pr.quaternion_from_axis_angle(start)
    end = np.array([0, 0, 0, np.pi])
    end[:3] = np.random.randn(3)
    end = pr.quaternion_from_axis_angle(end)
    n_frames = 200

    fig = plt.figure(figsize=(12, 5))

    ax = fig.add_subplot(121, projection="3d")
    ax.set_xlim((-1, 1))
    ax.set_ylim((-1, 1))
    ax.set_zlim((-1, 1))
    ax.set_xlabel("X")
    ax.set_ylabel("Y")
    ax.set_zlabel("Z")

    Rs = pr.matrix_from_quaternion(start)
    Re = pr.matrix_from_quaternion(end)

    rot = [
        ax.plot([0, 1], [0, 0], [0, 0], c="r", lw=3)[0],
        ax.plot([0, 0], [0, 1], [0, 0], c="g", lw=3)[0],
        ax.plot([0, 0], [0, 0], [0, 1], c="b", lw=3)[0],
        ax.plot([0, 1], [0, 1], [0, 1], c="gray", lw=3)[0],
        ax.plot(
            [0, Rs[0, 0]], [0, Rs[1, 0]], [0, Rs[2, 0]], c="r", lw=3, alpha=0.5
        )[0],
        ax.plot(
            [0, Rs[0, 1]], [0, Rs[1, 1]], [0, Rs[2, 1]], c="g", lw=3, alpha=0.5
        )[0],
        ax.plot(
            [0, Rs[0, 2]], [0, Rs[1, 2]], [0, Rs[2, 2]], c="b", lw=3, alpha=0.5
        )[0],
        ax.plot(
            [0, Re[0, 0]],
            [0, Re[1, 0]],
            [0, Re[2, 0]],
            c="orange",
            lw=3,
            alpha=0.5,
        )[0],
        ax.plot(
            [0, Re[0, 1]],
            [0, Re[1, 1]],
            [0, Re[2, 1]],
            c="turquoise",
            lw=3,
            alpha=0.5,
        )[0],
        ax.plot(
            [0, Re[0, 2]],
            [0, Re[1, 2]],
            [0, Re[2, 2]],
            c="violet",
            lw=3,
            alpha=0.5,
        )[0],
    ]

    ax = fig.add_subplot(122)
    ax.set_xlim((0, 1))
    ax.set_ylim((0, 1))
    profile = ax.plot(0, 0)[0]

    anim = animation.FuncAnimation(
        fig,
        update_lines,
        n_frames,
        fargs=(start, end, n_frames, rot, profile),
        interval=50,
        blit=False,
    )

    plt.show()

Total running time of the script: (0 minutes 34.440 seconds)

Gallery generated by Sphinx-Gallery