pytransform3d.rotations.euler_from_quaternion#

pytransform3d.rotations.euler_from_quaternion(q, i, j, k, extrinsic)[source]#

General method to extract any Euler angles from quaternions.

Parameters:
qarray-like, shape (4,)

Unit quaternion to represent rotation: (w, x, y, z)

iint from [0, 1, 2]

The first rotation axis (0: x, 1: y, 2: z)

jint from [0, 1, 2]

The second rotation axis (0: x, 1: y, 2: z)

kint from [0, 1, 2]

The third rotation axis (0: x, 1: y, 2: z)

extrinsicbool

Do we use extrinsic transformations? Intrinsic otherwise.

Returns:
euler_anglesarray, shape (3,)

Extracted rotation angles in radians about the axes i, j, k in this order. The first and last angle are normalized to [-pi, pi]. The middle angle is normalized to either [0, pi] (proper Euler angles) or [-pi/2, pi/2] (Cardan / Tait-Bryan angles).

Raises:
ValueError

If basis is invalid

References

[1]

Bernardes, E., Viollet, S. (2022). Quaternion to Euler angles conversion: A direct, general and computationally efficient method. PLOS ONE, 17(11), doi: 10.1371/journal.pone.0276302.