pytransform3d.rotations.random_matrix#

pytransform3d.rotations.random_matrix(rng=Generator(PCG64) at 0x7E0FC3BB8660, mean=array([[1., 0., 0.],        [0., 1., 0.],        [0., 0., 1.]]), cov=array([[1., 0., 0.],        [0., 1., 0.],        [0., 0., 1.]]))[source]#

Generate random rotation matrix.

Generate \(\Delta \boldsymbol{R}_{B_{i+1}{B_i}} \boldsymbol{R}_{{B_i}A}\), with \(\Delta \boldsymbol{R}_{B_{i+1}{B_i}} = Exp(\hat{\omega} \theta)\) and \(\hat{\omega}\theta \sim \mathcal{N}(\boldsymbol{0}_3, \boldsymbol{\Sigma}_{3 \times 3})\). The mean \(\boldsymbol{R}_{{B_i}A}\) and the covariance \(\boldsymbol{\Sigma}_{3 \times 3}\) are parameters of the function.

Note that uncertainty is defined in the global frame B, not in the body frame A.

Parameters:
rngnp.random.Generator, optional (default: random seed 0)

Random number generator.

meanarray-like, shape (3, 3), optional (default: I)

Mean rotation matrix.

covarray-like, shape (3, 3), optional (default: I)

Covariance of noise in exponential coordinate space.

Returns:
Rarray, shape (3, 3)

Rotation matrix

Examples using pytransform3d.rotations.random_matrix#

Plot Polar Decomposition

Plot Polar Decomposition