pytransform3d.uncertainty.invert_uncertain_transform#

pytransform3d.uncertainty.invert_uncertain_transform(mean, cov)[source]#

Invert uncertain transform.

For the mean \(\boldsymbol{T}_{BA}\), the inverse is simply \(\boldsymbol{T}_{BA}^{-1} = \boldsymbol{T}_{AB}\).

For the covariance, we need the adjoint of the inverse transformation \(\left[Ad_{\boldsymbol{T}_{BA}^{-1}}\right]\):

\[\boldsymbol{\Sigma}_{\boldsymbol{T}_{AB}} = \left[Ad_{\boldsymbol{T}_{BA}^{-1}}\right] \boldsymbol{\Sigma}_{\boldsymbol{T}_{BA}} \left[Ad_{\boldsymbol{T}_{BA}^{-1}}\right]^T\]
Parameters:
meanarray-like, shape (4, 4)

Mean of transform from frame A to frame B.

covarray, shape (6, 6)

Covariance of transform from frame A to frame B in exponential coordinate space.

Returns:
mean_invarray, shape (4, 4)

Mean of transform from frame B to frame A.

cov_invarray, shape (6, 6)

Covariance of transform from frame B to frame A in exponential coordinate space.

See also

pytransform3d.transformations.invert_transform

Invert transformation without uncertainty.

References

[1]

Mangelson, G., Vasudevan, E. (2019). Characterizing the Uncertainty of Jointly Distributed Poses in the Lie Algebra, https://arxiv.org/pdf/1906.07795.pdf

Examples using pytransform3d.uncertainty.invert_uncertain_transform#

Invert Uncertain Transform

Invert Uncertain Transform