pytransform3d.rotations.matrix_from_compact_axis_angle#

pytransform3d.rotations.matrix_from_compact_axis_angle(a)[source]#

Compute rotation matrix from compact axis-angle.

This is called exponential map or Rodrigues’ formula.

\[Exp(\hat{\boldsymbol{\omega}} \theta) = \cos{\theta} \boldsymbol{I} + \sin{\theta} \left[\hat{\boldsymbol{\omega}}\right] + (1 - \cos{\theta}) \hat{\boldsymbol{\omega}}\hat{\boldsymbol{\omega}}^T = \boldsymbol{I} + \sin{\theta} \left[\hat{\boldsymbol{\omega}}\right] + (1 - \cos{\theta}) \left[\hat{\boldsymbol{\omega}}\right]^2\]

This typically results in an active rotation matrix.

Parameters:
aarray-like, shape (3,)

Axis of rotation and rotation angle: angle * (x, y, z)

Returns:
Rarray-like, shape (3, 3)

Rotation matrix

Examples using pytransform3d.rotations.matrix_from_compact_axis_angle#

Rotate Cylinder

Rotate Cylinder