pytransform3d.transformations.transform_from_exponential_coordinates#

pytransform3d.transformations.transform_from_exponential_coordinates(Stheta, check=True)[source]#

Compute transformation matrix from exponential coordinates.

Exponential map.

\[Exp: \mathcal{S} \theta \in \mathbb{R}^6 \rightarrow \boldsymbol{T} \in SE(3)\]
\[\begin{split}Exp(\mathcal{S}\theta) = Exp\left(\left(\begin{array}{c} \hat{\boldsymbol{\omega}}\\ \boldsymbol{v} \end{array}\right)\theta\right) = \exp(\left[\mathcal{S}\right] \theta) = \left(\begin{array}{cc} Exp(\hat{\boldsymbol{\omega}} \theta) & \boldsymbol{J}(\theta)\boldsymbol{v}\theta\\ \boldsymbol{0} & 1 \end{array}\right),\end{split}\]

where \(\boldsymbol{J}(\theta)\) is the left Jacobian of \(SO(3)\) (see left_jacobian_SO3()).

Parameters:
Sthetaarray-like, shape (6,)

Exponential coordinates of transformation: S * theta = (omega_1, omega_2, omega_3, v_1, v_2, v_3) * theta, where S is the screw axis, the first 3 components are related to rotation and the last 3 components are related to translation. Theta is the rotation angle and h * theta the translation.

checkbool, optional (default: True)

Check if exponential coordinates are valid

Returns:
A2Barray, shape (4, 4)

Transformation matrix from frame A to frame B

Examples using pytransform3d.transformations.transform_from_exponential_coordinates#

Plot Transformation through Screw Motion

Plot Transformation through Screw Motion

Concatenate Uncertain Transforms

Concatenate Uncertain Transforms

Dual Quaternion Interpolation

Dual Quaternion Interpolation

Fuse 3 Poses

Fuse 3 Poses

Visualize Cylinder with Wrench

Visualize Cylinder with Wrench